3y^2+44y=871

Simple and best practice solution for 3y^2+44y=871 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+44y=871 equation:


Simplifying
3y2 + 44y = 871

Reorder the terms:
44y + 3y2 = 871

Solving
44y + 3y2 = 871

Solving for variable 'y'.

Reorder the terms:
-871 + 44y + 3y2 = 871 + -871

Combine like terms: 871 + -871 = 0
-871 + 44y + 3y2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-290.3333333 + 14.66666667y + y2 = 0

Move the constant term to the right:

Add '290.3333333' to each side of the equation.
-290.3333333 + 14.66666667y + 290.3333333 + y2 = 0 + 290.3333333

Reorder the terms:
-290.3333333 + 290.3333333 + 14.66666667y + y2 = 0 + 290.3333333

Combine like terms: -290.3333333 + 290.3333333 = 0.0000000
0.0000000 + 14.66666667y + y2 = 0 + 290.3333333
14.66666667y + y2 = 0 + 290.3333333

Combine like terms: 0 + 290.3333333 = 290.3333333
14.66666667y + y2 = 290.3333333

The y term is 14.66666667y.  Take half its coefficient (7.333333335).
Square it (53.77777780) and add it to both sides.

Add '53.77777780' to each side of the equation.
14.66666667y + 53.77777780 + y2 = 290.3333333 + 53.77777780

Reorder the terms:
53.77777780 + 14.66666667y + y2 = 290.3333333 + 53.77777780

Combine like terms: 290.3333333 + 53.77777780 = 344.1111111
53.77777780 + 14.66666667y + y2 = 344.1111111

Factor a perfect square on the left side:
(y + 7.333333335)(y + 7.333333335) = 344.1111111

Calculate the square root of the right side: 18.550232104

Break this problem into two subproblems by setting 
(y + 7.333333335) equal to 18.550232104 and -18.550232104.

Subproblem 1

y + 7.333333335 = 18.550232104 Simplifying y + 7.333333335 = 18.550232104 Reorder the terms: 7.333333335 + y = 18.550232104 Solving 7.333333335 + y = 18.550232104 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-7.333333335' to each side of the equation. 7.333333335 + -7.333333335 + y = 18.550232104 + -7.333333335 Combine like terms: 7.333333335 + -7.333333335 = 0.000000000 0.000000000 + y = 18.550232104 + -7.333333335 y = 18.550232104 + -7.333333335 Combine like terms: 18.550232104 + -7.333333335 = 11.216898769 y = 11.216898769 Simplifying y = 11.216898769

Subproblem 2

y + 7.333333335 = -18.550232104 Simplifying y + 7.333333335 = -18.550232104 Reorder the terms: 7.333333335 + y = -18.550232104 Solving 7.333333335 + y = -18.550232104 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-7.333333335' to each side of the equation. 7.333333335 + -7.333333335 + y = -18.550232104 + -7.333333335 Combine like terms: 7.333333335 + -7.333333335 = 0.000000000 0.000000000 + y = -18.550232104 + -7.333333335 y = -18.550232104 + -7.333333335 Combine like terms: -18.550232104 + -7.333333335 = -25.883565439 y = -25.883565439 Simplifying y = -25.883565439

Solution

The solution to the problem is based on the solutions from the subproblems. y = {11.216898769, -25.883565439}

See similar equations:

| 3y=6(8)+b | | -6+4b=1+3b | | 15=22+t/3 | | 216=28-w | | (9x)=27 | | (n+7)2= | | (n+7)(n+7)= | | 6(8x-4)-2(x-3)= | | (9x+10)=127 | | [x-10]=3 | | y=3(2)+9 | | tan(x)-2x=0 | | 7x+4x=-14+4x | | (9x+10)=137 | | 3v-4=-16 | | -6(1-5v)=64 | | 8h+10h=3h+25 | | d/3=d+1/6 | | 1a(-5)+4b=-4 | | 5(4m+1)-2m=-13 | | .5+8=57 | | 4w+15=67 | | 7-4=2(4)+11 | | 1/7(y+7)=5y | | 7=5+a/4 | | 1/5+8=57 | | 16/-8 | | -19=-5+2y | | 47/8= | | 2(x+2)/3=x+6 | | 4y+y-9y= | | 7=5+/4 |

Equations solver categories